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We study the vibration of soliton molecules in dipolar Bose–Einstein condensates by variational approach 
and numerical simulations of the nonlocal Gross–Pitaevskii equation. We employ the periodic variation 
of the strength of dipolar atomic interactions to excite oscillations of solitons near their equilibrium 
positions. When the parametric perturbation is sufficiently strong the molecule breaks up into individual 
solitons, like the dissociation of ordinary molecules. The waveform of the molecule and resonance 
frequency, predicted by the developed model, are confirmed by numerical simulations of the governing 
equation.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

One of the remarkable properties of Bose–Einstein condensates 
(BEC) is that, they can support self-localized states, known as soli-
tons, i.e. wave packets with particle like features. Solitons emerge 
from a fine balance between dispersive spreading of the wave 
packet and its self-focusing due to the nonlinearity of the medium. 
While experimental and theoretical studies of single solitons and 
soliton trains in BEC are reported in many publications (see e.g. 
review article [1] and book [2]), the interaction of solitons and for-
mation of their bound states remain less explored.

In other areas of physics, such as fiber optics and fiber lasers, 
the subject of soliton molecules is developed much better. In par-
ticular, the existence and some properties of soliton molecules in 
dispersion-managed optical fibers has been investigated in [3–5]. 
The binding mechanism of fiber optic solitons was proposed in [6]. 
Averaged dynamics of soliton molecules in dispersion-managed 
fiber links, in the context of optical communications, was recently 
studied in [7]. A survey of soliton molecules in dissipative systems, 
such as mode-locked fiber lasers, can be found in a review arti-
cle [8].

In some media the nonlinear response depends on the field in-
tensity in a certain neighborhood of the given location. Over the 
recent years these so called nonlocal nonlinear media have become 
the subject of intensive research due to their relevance to many 
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fundamental and applied problems of modern physics. Among 
other phenomena, solitons in nonlocal optical media are investi-
gated too, both theoretically and experimentally (for a recent re-
view see [9]). The existence of mutual interaction of spatial optical 
solitons in nonlocal media and the possibility of formation of their 
bound states was reported in [10]. Interaction of dark solitons un-
der competing nonlocal cubic and local quintic nonlinearities was 
investigated by means of a variational technique [11].

Nonlocal nonlinearity naturally arises in Bose–Einstein conden-
sates due to the long range dipole–dipole interactions between 
atoms [12]. The existence of stable isotropic and anisotropic 2D 
solitons in dipolar BEC was reported, respectively, in [13] and [14]. 
The conditions for stability and some dynamical effects with soli-
tons in 1D dipolar BEC were studied in [15–17].

Our objective in this work is the investigation of soliton inter-
actions in dipolar BEC with a main emphasis on the vibrational 
spectrum of a two-soliton molecule. At first we develop the vari-
ational approximation (VA) [18,19], which allows to find the sta-
tionary shape of the soliton molecule in dipolar BEC. Then we in-
troduce the ground state wave function, obtained by means of VA, 
as initial condition into the governing nonlocal Gross–Pitaevskii 
equation and periodically change the coefficient of nonlinearity. 
Such a parametric perturbation excites the internal modes of the 
soliton molecule, giving rise to resonant behavior at some spe-
cific frequencies. Spectral peaks on the vibration spectrum reveal 
much about the nature of soliton molecules. If the perturbation is 
sufficiently strong, the molecule can break up into individual non-
interacting solitons, in a process which is similar to dissociation 
of ordinary molecules. It should be noted that molecular vibra-
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tions under external perturbations represent one of the efficient 
methods in exploring the driven chemical reactions [20]. In this 
context, the present study may be regarded as an attempt to ap-
ply the ideas from physical chemistry to the field of cold quantum 
gases. In the relevant experiments with BEC the coefficient of non-
local nonlinearity, which depends on the strength of dipole–dipole 
interactions as ∼ d2, can be varied by exposing the condensate 
to external electric fields. In addition, spatially modulated polar-
izing external fields can induce atomic dipole moments, thereby 
enhancing the nonlocal effects in the condensate [21]. Also the 
time-dependent dipole–dipole interaction can be realized via pre-
cession of the direction of external field, for example by additional 
transversal magnetic field [22].

2. The model and variational approach

The governing equation of our model is the one-dimensional 
nonlocal Gross–Pitaevskii equation (GPE) which describes the evo-
lution of the condensate with only dipole–dipole atomic interac-
tions [23]

ih̄
∂ψ

∂t
+ h̄2

2m

∂2ψ

∂x2
+ 2αd2

l3⊥
ψ

+∞∫
−∞

R(|x − ξ |) |ψ(ξ, t)|2dξ = 0, (1)

where ψ(x, t) is the mean-field wave function of the condensate, 
normalized to the number of atoms N = ∫ ∞

−∞ |ψ |2dx, d is the mag-
netic or electric dipole moment of the atoms with mass m, l⊥ =√

h̄/mω⊥ is the harmonic oscillator length, ω⊥ is the frequency 
of transverse confinement for the condensate. The parameter α is 
connected to the angle φ, which dipoles form with respect to x di-
rection. For dipoles, rapidly oscillating in the plane, perpendicular 
to the x axis, the angular coefficient can change from α = 1 (φ = 0)

to α = −1/2 (φ = π/2). Eq. (1) can be reduced to dimensionless 
form via new variables t → ω⊥t , x → x/l⊥ , ψ → √

2|α|adψ , and 
ad = md2/h̄2.
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where g(t) is the time-dependent coefficient, responsible for 
the long-range dipolar atomic interactions. The time dependence 
can be realized via change of the angle φ between atomic 
dipoles and the x axis, by means of external electric or magnetic 
fields. For simplicity we excluded the contact interactions term 
∼ 2h̄ω⊥as |ψ |2 ψ from the governing equation. This is justified in 
experimental conditions when the atomic scattering length as is 
reduced to zero by means of a Feshbach resonance technique [24]. 
On the other hand, recently it was shown that Bose-condensed 
164Dy [25] and 168Er [26] can reach strongly dipolar regime, for 
which the relative strength of the dipolar and contact interactions 
is εdd = μ0μ

2m/12π h̄2as > 1, even without minimization of the 
atomic s-wave scattering length.

In further calculations we employ the analytically tractable 
Gaussian response function

R(x) = 1√
2π w

exp

(
− x2

2w2

)
, (3)

which is normalized to one 
∫ +∞
−∞ R(x)dx = 1. This response func-

tion is simple for analytical treatment and sufficient for under-
standing of the problem at hand. In fact R(x) is qualitatively sim-
ilar to the response function, obtained from rigorous calculations 
in [27]. As a trial function for the two-soliton molecule we use the 
first Gauss–Hermite function
ψ(x, t) = A(t) · x · exp

[
− x2

2a(t)2
+ ib(t)x2 + iφ(t)

]
, (4)

with the norm N = A2a3√π/2, which is a conserved quantity 
of the governing equation. So, in this setting the center-of-mass 
of the molecule does not change in time. Only the distance be-
tween solitons of the molecule is variable. In other words, each 
soliton can perform oscillations near its equilibrium position. The 
distance between center-of-mass positions of two solitons (separa-
tion, or bond length) is determined as 
(t) = 4 a(t)/

√
π . It should 

be noted, that similar ansatz was employed in the context of anti-
symmetric solitons in dispersion-managed optical fibers [28,29].

Eq. (2) can be derived from the Lagrangian density

L = i

2
(ψψ∗

t − ψ∗ψt) + 1

2
|ψx|2

− 1

2
g(t)|ψ(x, t)|2

∞∫
−∞

R(x − ξ)|ψ(ξ, t)|2dξ, (5)

where the subscript denotes derivative with respect to correspond-
ing variable, i.e. ψt = ∂ψ/∂t , ψx = ∂ψ/∂x.

Now using the response function (3) and ansatz (4), we obtain 
the Lagrangian density (5). Subsequent integration over the space 
variable L = ∫

Ldx yields the averaged Lagrangian

L

N
= 3

2
a2bt + φt + 3

4a2
+ 3 a2b2

− g(t) N

8
√

2π
· 3a4 + 4a2 w2 + 4w4

(a2 + w2)5/2
. (6)

The Euler–Lagrange equations d/dt(∂L/∂νt) − ∂L/∂ν = 0 for varia-
tional parameters ν → φ, b, a yield the following system

Nt = 0, at = 2 a b,

bt = 1

2a4
− 2 b2 − g(t) N

8
√

2π
· a4 + 4w4

(a2 + w2)7/2
. (7)

The first equation in (7) is decoupled from others and states the 
conservation of the wave packet’s norm. The equation for the 
width can be derived from the last two equations in (7)

att = 1

a3
− g(t) N

4
√

2π
· a(a4 + 4w4)

(a2 + w2)7/2
. (8)

This equation is similar to equation of motion for a unit mass par-
ticle in the anharmonic potential

att = −∂U

∂a
, with

U (a) = 1

2a2
− gN

12
√

2π
· 3a4 + 4a2 w2 + 4w4
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. (9)

The stationary state a0 corresponding to the minimum of the 
potential well ∂U/∂a = 0 gives the equilibrium separation be-
tween solitons 
0 = 4a0/

√
π , and the amplitude via the norm 

A0 =
√

2 N/(a3
0

√
π). Therefore, the shape of the soliton molecule, 

given by Eq. (4) is determined by the variational approximation.
The weakly perturbed soliton molecule will perform oscillations 

with a frequency
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(

3
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4
√

2π
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)1/2

.

(10)

Fig. 1 illustrates the potential U (a) and shape of the two-soliton 
molecule.
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Fig. 1. (Color online.) The shape of the anharmonic potential given by Eq. (9). The 
inset shows the ground state waveform of a two-soliton molecule, as predicted by 
VA for a Gaussian response function (3) with w = 5. The norm, width and ampli-
tude of the molecule are N = 2, a0 = 1.87, A0 = 0.59, respectively. The coefficient 
of nonlocal nonlinearity is g0 = 20.

To verify the accuracy of the developed approach, we intro-
duce the VA predicted waveform for a two-soliton molecule into 
the GPE (2), and let the molecule to evolve for some period of 
time. The results are shown in Fig. 2. As is evident from this fig-
ure, the stationary state of the molecule is indeed well predicted 
by the VA. Periodic oscillations of solitons near equilibrium posi-
tions are observed, when they are set in motion toward each-other 
with a small velocity. The frequency and period of oscillations, pre-
dicted by VA ω0 � 0.5, T0 = 2π/ω0 � 12.6 for N = 2 and g0 = 20, 
are also confirmed by GPE simulations.

3. Response of the soliton molecule to parametric perturbation

Understanding the molecular vibrations can help to control 
chemical reactions, that is why it is an important subject in phys-
ical chemistry. Relevant phenomenon is the intramolecular vibra-
tional energy transfer, which significantly affects the rate of some 
chemical reactions [30]. Our interest in exploring the vibration dy-
namics of soliton molecules in dipolar condensates is motivated, to 
some extent, by these analogies.

Vibrations of the soliton molecule can be induced by periodic or 
random variations of the coefficient of nonlinearity in the GPE (2). 
In relevant experiments this can be done by exposing the con-
densate to external electric field, which acts on the dipoles, by 
changing their strength or orientation in space. Since the coeffi-
cient of nonlocal nonlinearity depends of the dipole moments of 
atoms as g ∼ d2, the electric field leads to variation of this coeffi-
cient.
Below we present the vibration dynamics of a two-soliton 
molecule, based on numerical simulations of the VA Eq. (8) and the 
governing GPE (2). Ordinary differential equation (8) is solved by 
fourth-order Runge–Kutta procedure with adaptive step-size con-
trol [31]. Numerical solution of the GPE (2) is performed by split-
step fast Fourier transform method [32], which was proved to be 
quite effective in solving similar problems in fiber optics and BEC. 
We have used 2048 Fourier modes in the integration domain of 
length x ∈ [−6π, 6π ], and the time step was δt = 0.001. To speed 
up the calculation of the integral term in the GPE we employ the 
convolution theorem. The accuracy of calculations was monitored 
by checking the conserved quantities of the GPE, such as the norm 
and field momentum. These quantities were conserved within rel-
ative error ∼ 10−3. Radiation of linear waves by the oscillating 
soliton molecule was not detected.

In the left panel of Fig. 3 we show the dynamics of center-of-
mass positions of two solitons, forming the molecule, when the 
coefficient of nonlinearity is periodically varied in time at reso-
nance frequency, which is predicted by VA. At initial stage of the 
evolution the amplitude of oscillations grows linearly, as is usual 
for ordinary resonance phenomenon. Later the amplitude of os-
cillations starts to decrease due to de-tuning from the resonance. 
This is a manifestation of the nonlinear resonance phenomenon, 
when the frequency of oscillations starts to depend on its am-
plitude [33]. Oscillations with growing and decreasing amplitude 
repeat as time progresses. Observed discrepancy between the VA 
and GPE is explained by the fact, that in GPE simulations internal 
vibrations of solitons interfere with their center-of-mass dynamics, 
while in the VA approach these phenomena are neglected. The am-
plitude vs. frequency curve, presented in the right panel of Fig. 3, 
characterizes the vibration spectrum of the two-soliton molecule. 
Strong peak at the main frequency and weaker peaks at harmon-
ics corroborate with predictions of the VA and results of numerical 
simulations of the governing GPE.

4. Dissociation of the soliton molecule

Direct external forcing or parametric perturbations give rise to 
excitation of internal modes of the soliton molecule. In its sim-
plest form the excitation shows up as vibration of solitons near 
their equilibrium positions. Few examples of small amplitude dy-
namics of the molecule were shown in the previous section. If the 
perturbation is sufficiently strong, the molecule can break-up into 
individual non-interacting solitons. This is analogue of the dissoci-
ation of ordinary molecules under perturbation [34].

In Fig. 4 we illustrate the process of dissociation of a two-
soliton molecule under periodically varying nonlocal nonlinearity. 
As can be observed, the separation between solitons starts to oscil-
late with growing amplitude, and finally diverges at some time in-
stance. The molecule breaks-up into two individual solitons, mov-
Fig. 2. (Color online.) Left panel: In stationary state of the molecule solitons stay at their equilibrium positions x0 = ±2a0/
√

π and do not show any dynamics. Right panel: 
If solitons are set in motion by assigning some velocity towards each-other, they oscillate near equilibrium positions. The initial state corresponds to a two-soliton molecule, 
shown in the inset of Fig. 1. The initial velocity at(0) = 2a0b0 is assigned via the chirp parameter b0 = −0.05 in Eq. (4).
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Fig. 3. (Color online.) Left panel: Periodic variation of the coefficient of nonlocal nonlinearity g(t) = g0 · (1 + ε sin(ω · t)) with a small amplitude ε = 0.01 and g0 = 10 at a 
resonance frequency ω = 0.297, gives rise to vibration of solitons near their equilibrium positions. At initial stage the amplitude of oscillations increases linearly, as inherent 
to usual resonance phenomenon, and then decreases again due to de-tuning from the resonance. There is the manifestation of the phenomenon of nonlinear resonance. 
Right panel: The amplitude of molecule’s vibrations as a function of frequency at ε = 0.05. The main resonance and second harmonic are evident at specific frequencies, as 
predicted by VA (blue dashed line) and confirmed by numerical simulations of the GPE (2) (red solid line). Parameters are the same as in Fig. 1.

Fig. 4. (Color online.) Left panel: Dissociation of the two-soliton molecule under periodic variation of the coefficient of nonlocal nonlinearity g(t) = g0(1 + ε sin(ωt)) at a 
resonance frequency ω = 0.51 for g0 = 20, ε = 0.4, according to numerical simulation of the GPE (2). Right panel: The same process according to VA Eq. (8), which is in 
qualitative agreement with the result of GPE simulation. Current positions of two solitons are determined from Eq. (8) as x(t) = ± 2 a(t)/

√
π .
ing apart with some velocity. Although the qualitative agreement 
between the result of numerical GPE simulations and correspond-
ing prediction of VA is evident, the break-up times are notably 
different. This discrepancy can be explained by the fact that VA 
does not take into regard the interaction between the dynamics of 
the molecule and internal vibrations of individual solitons.

In the limit of strong non-locality, when the waist of the re-
sponse function is greater than the spatial extent of the soliton 
molecule (w 
 a), the main equation of the VA model (8) can be 
reduced to the following form

att = 1

a3
− g(t)N√

2π w3
a. (11)

For g(t) = g0 + g1 sin(�t) we have the equation

att + f (t)a = 1

a3
, (12)

where

f (t) = ω2
0(1 + ε sin(�t)), ω2

0 = g0N√
3
, ε = g1

.

2π w g0
Eq. (11) has the form of the Ermakov–Pinney equation, which 
arises in a variety of contexts [35–37]. The main feature of Eq. (11)
is that its general solution

a(t) =
√

α(t)2 + 1

W
β(t)2 (13)

can be presented in terms of the linearly independent solutions 
α(t), β(t) of the Mathieu equation

vtt + f (t)v = 0, (14)

and W is the constant Wronskian W = αβt − αtβ . The Ermakov–
Pinney equation inherits the instability features of the associated 
Eq. (14), which is parametrically unstable for

|� − 2ω0| = εω0

2
. (15)

Numerical simulations, presented in this work, are performed 
using the parameters of the 164Dy condensate [25], whose atoms 
have a largest permanent magnetic dipole moment μ = 10μB

in the ground state. Strong radial confinement with a frequency 
ω⊥ = 2π ×60 Hz provides quasi-one dimensionality of the system. 
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Corresponding radial harmonic oscillator length is l⊥ = √
h̄/mω⊥ �

1 μm. The axial confinement for the condensate in the attractive 
regime, although present in the initial stage of its preparation, 
later can be removed to allow the soliton freely move along the x
axis. Characteristic length of dipolar interactions is estimated from 
add = μ0μ

2m/(12π h̄2) � 7 × 10−9 m, where μ0 = 12.57 N/A2 per-
meability of vacuum, μ = 10μB = 9.274 × 10−23 A m2 and m =
164 amu = 2.72 × 10−25 kg are the magnetic moment and mass 
of the 164Dy atom, respectively. For this set of parameters the 
two-soliton molecule with dimensionless norm N = 2 and waist 
of the response function w = 5, will contain ∼ 5 × 103 atoms. This 
number is compatible with the total number of condensed atoms 
∼ 15 × 103 produced in the experiment [25].

5. Conclusions

Bright solitons in dipolar Bose–Einstein condensates can form 
stable bound states, known as soliton molecules. In this work 
we have studied the small amplitude dynamics of a two-soliton 
molecule by analytical and numerical methods. The analytical ap-
proach, based on the variational approximation, allows to find the 
stationary shape of the soliton molecule. The model also predicts, 
that interaction potential between two anti-phase bright solitons 
in dipolar BEC has a molecular type property. Specifically, solitons 
attract each-other at long distances and repel at short distances. At 
a distance between solitons, where attractive and repulsive forces 
come to balance, the molecule stays in its stationary state. The in-
ternal modes of the soliton molecule can be excited by periodic 
variation of the strength of dipole–dipole atomic interactions in 
the condensate. In the simplest case excitation of the molecule 
shows up as vibration of solitons near their equilibrium positions. 
In numerical experiments the spectrum of molecule’s vibrations 
has been obtained by measuring the largest and smallest separa-
tion between two oscillating solitons at a given frequency of the 
perturbation, in a wide frequency domain. If the perturbation is 
sufficiently strong, the molecule can break up into individual non-
interacting solitons, which is an analogue of the dissociation of 
ordinary molecules. Comparison between the results of numerical 
simulations of the GPE and predictions of the variational approxi-
mation shows a good qualitative agreement.
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